Locating-domination, 2-domination and independence in trees

نویسندگان

  • Mostafa Blidia
  • Odile Favaron
  • Rahma Lounes
چکیده

A set D of vertices in a graph G is 2-dominating if every vertex not in D has at least two neighbors in D and locating-dominating if for every two vertices u, v not in D, the sets N(u) ∩ D and N(v) ∩ D are non-empty and different. The minimum cardinality of a 2-dominating set (locatingdominating set) is denoted by γ2(G) (γL(G)). It is known that every tree T with n ≥ 2 vertices, leaves, s support vertices and independence number β(T ), satisfies γL(T ) ≤ (n + − s)/2 ≤ β(T ) ≤ γ2(T ). We show that β(T )+ γL(T ) ≤ n+ − s and that γ2(T ) = (n+ − s)/2 if and only if γL(T ) = γ2(T ). Moreover, γ2(G) ≤ 2γL(G) for every bipartite graph and γ2(G) ≤ 2γL(G)− 1 if G is a tree with n ≥ 3. 310 BLIDIA, FAVARON AND LOUNES

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Roman domination and 2-independence in trees

‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mi...

متن کامل

Trees with equal 2-domination and 2-independence numbers

Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V − S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ2(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β2(G). Fink and Jaco...

متن کامل

A characterization of trees with equal 2-domination and 2-independence numbers

A set S of vertices in a graph G is a 2-dominating set if every vertex of G not in S is adjacent to at least two vertices in S, and S is a 2-independent set if every vertex in S is adjacent to at most one vertex of S. The 2-domination number γ2(G) is the minimum cardinality of a 2-dominating set in G, and the 2-independence number α2(G) is the maximum cardinality of a 2-independent set in G. Ch...

متن کامل

A characterization relating domination, semitotal domination and total Roman domination in trees

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...

متن کامل

A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2008